BONE CANCER IN DOGS – CURRENT OPTIONS, NEW DIRECTIONS

Douglas H. Thamm, VMD
Dip ACVIM (Oncology)
Barbara Cox Anthony Professor of Oncology
dthamm@colostate.edu
Canine OSA - Background

• Long bones affected most commonly
 – “Away from the Elbow, Toward the Knee”
Canine OSA - Background

- Large breed dogs
- 2 age groups affected:
 - Young dogs (18-24 months)
 - Older dogs (7-9 years)
Appendicular OSA - Presenting Complaints

• Lameness
 – *Often be chronic, progressive*
 • May initially respond well to pain meds/rest
 • Owners are likely to remember some trauma that started lameness
 – *May be acute, severe in onset*
Appendicular OSA - Diagnosis/Staging

- X-rays
 - *Limb*
Canine Appendicular OSA - Diagnosis/Staging

• Radiographs
 – *Limb*
 – *Chest*
 • 7% of dogs have detectable metastasis at first presentation
 • 90% have microscopic metastasis
Canine Appendicular OSA - Diagnosis/Staging

- Biopsy
- Fine Needle Aspirate
 - X-ray or ultrasound guided
 - Alkaline phosphatase staining
Biopsy

- **Risks / Problems**
 - *May be more painful for 24-48 hours following biopsy procedure*
 - *Risk of pathologic fracture (< 1%)*
 - *Nondiagnostic biopsy (7-10% chance)*
Osteosarcoma - Treatment

• Symptomatic pain management:
 – NSAIDs
 – Opiates
 • Tramadol
 • Codeine
 • Fentanyl patch
 – Gabapentin
 – Bisphosphonates (more later)
Canine Osteosarcoma

Amputation Alone -
Canine Osteosarcoma

Amputation Alone - 4 Month Median Survival time
Carboplatin

- Rapid IV injection once every 3 weeks
- Side effects rare (low white blood cell count most common, but usually not associated with illness)
- Roughly triples average survival time (from 4 months to 10-12 months)
Prognostic Factors

- Serum Alkaline Phosphatase
- Humerus location
 - *Are these tumors bigger on average?*
- Monocytes!
Research Article

Prognostic significance of circulating microRNA-214 and -126 in dogs with appendicular osteosarcoma receiving amputation and chemotherapy

Kazuki Heishima1*, Travis Meuten2, Kyoko Yoshida1, Takashi Mori1,3 and Douglas H. Thamm2

miR-214

Long-term

\begin{align*}
\text{% survival} \\
\text{Years}
\end{align*}

\begin{align*}
P = 0.0026 \\
\text{**}
\end{align*}

1-year

\begin{align*}
\text{% survival} \\
\text{Years}
\end{align*}

\begin{align*}
P = 0.011 \\
\text{*}
\end{align*}

\begin{align*}
\text{High (n=56)} \\
\text{MST: 296 days}
\end{align*}

\begin{align*}
\text{Low (n=20)} \\
\text{MST: 575 days}
\end{align*}
Follow-Up

• Recheck every 2-3 months
 – *Physical examination*
 – *Chest X-rays*
Contraindications to Amputation

- Severe neurologic disease
- Severe obesity
- Severe orthopedic condition
 - Mild/moderate arthritis is NOT a show-stopper in most cases
- Owner will not permit
 - Dispel myths
Canine OSA - Local Treatment Alternatives

- **Surgical Limb Salvage**
 - *Diseased bone removed and replaced with graft or metal implant*
 - *Joint fusion*
 - *Most effective in distal radius OSA*
Canine OSA - Treatment Alternatives

• “Palliative” Radiation Therapy
 – 0, 7, 21 days, weekly x 4, daily x 2
 – Well tolerated, outpatient, relatively inexpensive ($700-2000)
 – Good pain control in 75-90% of cases
 – Median duration = 2-4 months
 – Can be repeated
Bisphosphonate Drugs

- Pamidronate, zoledronate
 - Inhibitors of bone destruction
 - Primarily prescribed in humans for the prevention of osteoporosis
 - Can significantly reduce the pain associated with bone metastasis in humans

- Once-monthly injections
- About 1/3 of dogs show benefit
Stereotactic Radiation Therapy
Current CSU OSA SRT protocol

- Treatment planning CT
- SRT, 3 fractions daily
- Zoledronate pre-treatment
- Carboplatin chemotherapy with 1st or 2nd SRT
- Continue carboplatin as with amputation for 3 more treatments
- $7-8,000
- Average survival time same as amputation
- Risk of fracture
Immunotherapy with a HER2-Targeting *Listeria* Induces HER2-Specific Immunity and Demonstrates Potential Therapeutic Effects in a Phase I Trial in Canine Osteosarcoma

Nicola J. Mason1,2, Josephine S. Gnanandarajah1, Julie B. Engiles2, Falon Gray2, Danielle Laughlin1, Anita Gaurnier-Hausser3, Anu Wallecha4, Margie Huebner5, and Yvonne Paterson6